K-theory of a category - definitie. Wat is K-theory of a category
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is K-theory of a category - definitie


K-theory of a category         
In algebraic K-theory, the K-theory of a category C (usually equipped with some kind of additional data) is a sequence of abelian groups Ki(C) associated to it. If C is an abelian category, there is no need for extra data, but in general it only makes sense to speak of K-theory after specifying on C a structure of an exact category, or of a Waldhausen category, or of a dg-category, or possibly some other variants.
Category A services         
CLASS OF CANADIAN TV CHANNEL THAT ALL CABLE SYSTEMS MUST CARRY
Category 1 channels (Canada); Category A specialty channel; Category 1 specialty channel; Category A Services; Category A service
Category A services were a class of Canadian specialty television channel which, as defined by the Canadian Radio-television and Telecommunications Commission, must be offered by all digital cable and direct broadcast satellite providers that have the capability to do so.
Category theory         
BRANCH OF MATHEMATICS STUDYING CATEGORIES, FUNCTORS, AND NATURAL TRANSFORMATIONS
CategoryTheory; Category Theory; Category theoretic; Category-theoretic; Categorical point of view; Draft:Applied Category Theory; Object of a category
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science.